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Note: this is only a draft of the problems discussed on Tuesday and might contain some typos or more or less
imprecise statements. If you find some, please let me know.

Binary Response Models

Recall

Pt ≡ P[yt = 1|Ωt] = E[yt|Ωt],

1− Pt ≡ P[yt = 0|Ωt] = 1− E[yt|Ωt].

So, BRN can be thought of as modelling a conditional expectation. Since this conditional expectation is
also a probability, we need to ensure that it lies in the 0− 1 interval.

For this purpose consider a nonlinear transformation function F (x) satisfying the defining properties of a
CDF i.e.

F (−∞) = 0,

F (∞) = 1,

f(x) ≡ dF (x)

dx
> 0.

Then if we use an index function to map the vectors Xt and β into a scalar index, we get the required property

Pt ≡ E[ytΩt] = F (Xtβ) ∈ (0, 1).

BRM: ML Estimation

Chapter 10 11.2

Dependent variable continuously distributed binary

Contribution to the likelihood probability density at yt probability that yt is realized

Likelihood function joint density product of Bernoulli trials

Constraint on likelihood integral of the possible values
equal to 1

sum of the possible values
equal to 1

yt - the realized value

Table 1: ML estimation comparison

From Table 1 follows that when the dependent variable can take only discrete values, we cannot proceed like
in the continuous case and take joint density as our likelihood function. Since yt = 1 or yt = 0, with the
probability of the former given by F (Xtβ), now the contribution to the loglikelihood for that observation if
yt = 1 is logF (Xtβ). Similarly, the probability that yt = 0 is 1−F (Xtβ) so the contribution to the loglikelihood
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for that observation if yt = 0 is log
(

1− F (Xtβ)
)

. This means that the contribution to the likelihood function

made by observation t is

F (Xtβ)yt [1− F (Xtβ)]1−yt .

yielding the contribution to the loglikelihood function equal to

yt logF (Xtβ) + (1− yt) log(1− F (Xtβ). (1)

Hence the loglikelihood function for y is

l(y, β) =

n∑
t=1

(
yt logF (Xtβ) + (1− yt) log

(
1− F (Xtβ)

))
. (11.09)

BRM: Inference

In subchapter 11.3 it is stated that it can be shown that

Var
(

plimn1/2(β̂ − β0)
)

= plim

(
1

n
XT Υ(β0)X

)−1
, (11.15)

where Υ(β) is a diagonal matrix with the typical element

Υt(β) =
f2(Xtβ)

F (Xtβ)(1− F (Xtβ))
.

Below, we will explicitly obtain the asymptotic covariance matrix (11.15) for a BRM using general results
for ML estimation.

1◦ First (Ex. 11.7), we will start with deriving of the asymptotic information matrix and then compare
it with the asymptotic covariance matrix (11.15), to show that the latter is equal to the inverse of the
former.

2◦ Second (Ex. 11.8), we will start with obtaining the Hessian matrix corresponding to the loglikelihood
function (11.09) and then use the information matrix equality1, to obtain the same result, i.e. that
the asymptotic covariance matrix is equal to the RHS of (11.15).

DM, 11.7

1. First, we want to find Gti, the derivative of the contribution to the log-likelihood function made by the
t-th observation with respect to βi.

The derivative of (1) with respect to βi is given by

Gti(β) =
ytf(Xtβ)xti
F (Xtβ)

− (1− yt)f(Xtβ)xti
1− F (Xtβ)

. (2)

2. Next, we need to show that the expectation of Gti is zero when it is evaluated at the true β.

Notice, that the only source of randomness in (2) is yt, the expected value of which is equal to F (Xtβ)
(under the DGP characterized by β). Hence by linearity and conditioning on Ωt, we obtain

E (Gti(β)) =
E (yt)f(Xtβ)xti

F (Xtβ)
− (1− E (yt))f(Xtβ)xti

1− F (Xtβ)

=
F (Xtβ)f(Xtβ)xti

F (Xtβ)
− (1− F (Xtβ))f(Xtβ)xti

1− F (Xtβ)

=
F (Xtβ)f(Xtβ)xti

F (Xtβ)
− (1− F (Xtβ))f(Xtβ)xti

1− F (Xtβ)

= f(Xtβ)xti − f(Xtβ)xti

= 0,

which is the required result.

1Recall: it says that minus the expectation of the asymptotic Hessian is equal to the information matrix.
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3. Then we will use the fact that the asymptotic information matrix is equal to

I(β)= lim
n→∞

n∑
t=1

E (GtiGtj),

to obtain its typical.

Recall, that the asymptotic information matrix is a plim of the information matrix defined as

I(β) =
1

n

n∑
t=1

E
(
GT

t (β)Gt(β)
)
.

To find its typical element, let us start with calculating

Gti(β)Gtj(β) =
y2t f

2(Xtβ)xtixtj
F 2(Xtβ)

+
(1− yt)2f2(Xtβ)xtixtj

(1− F (Xtβ))2
− yt(1− yt)f2(Xtβ)xtixtj

F (Xtβ)(1− F (Xtβ))
.

The expected value of the above expression is

E (Gti(β)Gtj(β)) =
f2(Xtβ)xtixtj

F (Xtβ)
+
f2(Xtβ)xtixtj
1− F (Xtβ)

=
f2(Xtβ)xtixtj

F (Xtβ)(1− F (Xtβ))
,

since

E
(
y2t
)

= F (Xtβ),

E
(
(1− yt)2

)
= 1− F (Xtβ),

E (yt(1− yt)) = 0,

where the last equality arises from yt being either 0 or 1. Therefore, we arrive at

1

n

n∑
t=1

E (Gti(β)Gtj(β)) =
1

n

n∑
t=1

f2(Xtβ)xtixtj
F (Xtβ)(1− F (Xtβ))

, (3)

which in the plim yields the typical element of the asymptotic information matrix I(β).

4. Finally, we need to show that the asymptotic covariance matrix (11.15) is equal to the inverse of this
asymptotic information matrix.

In the matrix notation, I(β) can be expressed as

I(β) =
1

n

n∑
t=1

E
(
GT

t (β)Gt(β)
)

=
1

n

n∑
t=1

XT Υ(β)X︸ ︷︷ ︸
(∗∗)

.

As (∗∗) is indeed the inverse of (11.15), the proof has been completed.
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DM, 11.8

1. First, we need to calculate the Hessian matrix corresponding to the loglikelihood function (11.09).

Recall that the ij-th element of the Hessian matrix Hij(β) corresponding to the loglikelihood function
(11.09) is the derivative with respect to βj of the typical element of the gradient gi(β) given by

gi(β) =
∂l(β)

∂βi
=

n∑
t=1

(yt − F (Xtβ))f(Xtβ)Xti

F (Xtβ)(1− F (Xtβ))
, i = 1, . . . , k.

Taking derivative of each element in the above sum results, for each t, in the ij-th element of the Hessian
matrix being a fraction with the denominator equal to

F 2(Xtβ)(1− F (Xtβ))2, (4)

and the numerator given by

− f2(Xtβ)xtixtjF (Xtβ)(1− F (Xtβ)) (5)

+ (yt − F (Xtβ))f ′(Xtβ)xtixtjF (Xtβ)(1− F (Xtβ)) (6)

− (yt − F (Xtβ))f2(Xtβ)xtixtj(1− F (Xtβ)) (7)

+ (yt − F (Xtβ))f2(Xtβ)xtixtjF (Xtβ). (8)

2. Then, we will use the fact that minus the expectation of the asymptotic Hessian is equal to the asymptotic
information matrix to obtain the same result for the latter that you obtained in the previous exercise.

Conditional on Xt, (4) and (5) are nonstochastic, while (6)–(8) have expectation 0, since E (yt−F (Xtβ)) =
0. Therefore,

E
(
n−1Hij(β)

)
= − 1

n

n∑
t=1

f2(Xtβ)xtixtj
F (Xtβ)(1− F (Xtβ))

,

which is the opposite of (3), the ij-th element of the information matrix. Since the asymptotic Hessian
is equal to minus the asymptotic information matrix, we have shown once again that the asymptotic
covariance matrix is given by the RHS of (11.15), which is the desired result.
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